Category Archives: Testing

Why success with HALT begins long before doing HALT

HALT is a BIG change

Implementing a new reliability development paradigm in a company which is using traditional, standards-based testing can be a perilous journey.  It is especially true with introducing HALT (Highly Accelerated Life Test) in which strength against stress, and not quantifying electronics lifetimes is the new metric.  Because of this significant change in test orientation, a critical factor for success begins with educating the company’s top Continue reading Why success with HALT begins long before doing HALT

Question use of reliability testing standards

Each of us have seen product life or component reliability claims on product literature or data sheets. We may even have received such claims stated as goals and been asked to support the claim with some form of an experiment. Standards bodies from ANSI, BSI, ISO, IEC, and others from around the world provide standard methods for testing products. This includes product life testing in some cases. Continue reading Question use of reliability testing standards

Why HALT is a methodology, not equipment

Kirk Gray, Accelerated Reliability Solutions, L.L.C.

It is easy to understand why the term HALT (Highly Accelerated Life Test) is so tightly couple to the equipment called “HALT chambers” systems.  Many do not think they can do HALT processes without a “HALT Chamber”. Many know that Dr. Gregg Hobbs, who coined the term HALT and also HASS (Highly Accelerated Stress Screens), spent much of his life promoting the techniques and was also the founder of two “HALT/HASS” environmental chamber companies. Continue reading Why HALT is a methodology, not equipment

Why Parametric Variation Can Lead to Failures and HALT Can Help

Kirk Gray, Accelerated Reliability Solutions, L.L.C.

Many reliability engineers have discovered HALT will quickly find the weaknesses and reliability risks in electronic and electromechanical systems from the capability of thermal cycling and vibration to create rapid mechanical fatigue in electronic assemblies. Assemblies that have latent defects such as cold solder or cracked solder joints, loose connectors or mechanical fasteners, or component package defects can be brought to a detectable, or patent, condition by which we can observe and potentially improve the robustness of an electronics system. Continue reading Why Parametric Variation Can Lead to Failures and HALT Can Help

AQL decision

Recently I received a question related to setting an Acceptable Quality Level (AQL) for a sampling of fielded electricity meters. The question was on how to select the right AQL for use with the sampling plan. I was not sure from the question if the sample would determine if the population would be replaced or not (expensive), or simply an experiement to determine how the meters are doing after 15 years of service (information only). Continue reading AQL decision

For Maximum Test Value, Take it to the Limit!

When we go to an automobile race such as the Indianapolis 500, watching those cars circle the track can get fairly boring. What is secretly unspoken is that everyone observing the race is watching for a race car to find and sometimes exceed a limit, finding a discontinuity. The limit could be how fast he enters a curve before the acceleration forces exceed the tires coefficient of friction, or how close to the racetrack wall, he can be before he contacts it and spins out of control. Using the race analogy, Continue reading For Maximum Test Value, Take it to the Limit!

Where does 0.7eV come from

This post is a conversation first held on the LinkedIn group No MTBF. I’m capturing a portion of the contributions here to continue the discussion or to widen the audience. Reminds me of always assuming 95% confidence is the right value when designing a test, or assuming constant failure rate. So, let the conversation continue, starting with the original post. Continue reading Where does 0.7eV come from

Role of parts count prediction

Great note [response to comment on Drain in the Bathtub Curve on NoMTBF Linkedin Group] – yes, there is a place for parts count prediction — not to determine the mtbf, to encourage proper derating, thermal engineering, and parts reduction, etc. It’s a start and as you note only one part of the reliability program. Continue reading Role of parts count prediction

Arrhenius or Erroneous

the following is a discussion on the sister Linkedin NoMTBF Group recently. It was and may continue to be a great discussion. Please take a look and comment on where you stand? Do you some form of the Arrhenius reaction rate equation in your reliability engineering work?Join the discussion here with a comment, or on the Linkedin group conversion.


Continue reading Arrhenius or Erroneous

Acceleration factors

gear used for a rock climbing anchor
Gear for anchor during rock climbing

Temperature acceleration factor for ALT planning (question posted to Linkedin Society of Reliability engineers group, 5/7/12

Hello, can anyone advise me how to calculate temperature acceleration factor for a complex system including cards, RF elements, cables, motors and moving parts? Is the Arrhenius model valid for such systems, or there are more precise models? Thank you! Continue reading Acceleration factors

System or component testing

Fred i was asked this question and wanted to know what your thoughts were on this. R and D asked me what was the criteria to decide if to test at a component level or at a system level , my answer was that it should depend on what is the reliability and confidence level of the component
your thoughts? Continue reading System or component testing